Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region.
نویسندگان
چکیده
LuxR, the Vibrio fischeri luminescence gene (lux) activator, is the best-studied member of a family of bacterial transcription factors required for cell density-dependent expression of specific genes involved in associations with eukaryotic hosts. Neither LuxR nor any other LuxR homolog has been shown to bind DNA directly. We have purified the LuxR C-terminal transcriptional activator domain from extracts of recombinant Escherichia coli in which this polypeptide was expressed. The purified polypeptide by itself binds to lux regulatory DNA upstream of the lux box, a 20-bp palindrome that is required for LuxR activity in vivo, but it does not bind to the lux box. However, the LuxR C-terminal domain together with RNA polymerase protects a region including the lux box and the lux operon promoter from DNase I cleavage. There is very little protection of the lux operon promoter region from DNase I digestion in the presence of RNA polymerase alone. Apparently, there is a synergistic binding of the LuxR C-terminal domain and RNA polymerase to the promoter region. The upstream binding region for the purified polypeptide encompasses a binding site for cAMP receptor protein (CRP). Under some conditions, CRP binding can block the binding of the LuxR C-terminal domain to the upstream binding region, and it can also block the synergistic binding of the LuxR C-terminal domain and RNA polymerase to the lux box and luminescence gene promoter region. This description of DNA binding by the LuxR C-terminal domain should lead to an understanding of the molecular interactions of the LuxR family of transcriptional activators with regulatory DNA.
منابع مشابه
Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor.
The Vibrio fischeri luminescence (lux) operon is regulated by a quorum-sensing system that involves the transcriptional activator (LuxR) and an acyl-homoserine lactone signal. Transcriptional activation requires the presence of a 20-base inverted repeat termed the lux box at a position centered 42.5 bases upstream of the transcriptional start of the lux operon. LuxR has proven difficult to stud...
متن کاملIn silico structural analysis of quorum sensing genes in Vibrio fischeri
Quorum sensing controls the luminescence of Vibrio fischeri through the transcriptional activator LuxR and the specific autoinducer signal produced by luxI. Amino acid sequences of these two genes were analyzed using bioinformatics tools. LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase fa...
متن کاملRole of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing.
During quorum sensing in Vibrio fischeri, the luminescence, or lux, operon is regulated in a cell density-dependent manner by the activator LuxR in the presence of an acylated homoserine lactone autoinducer molecule [N-(3-oxohexanoyl) homoserine lactone]. LuxR, which binds to the lux operon promoter at a position centered at -42.5 relative to the transcription initiation site, is thought to fun...
متن کاملA mutational analysis defines Vibrio fischeri LuxR binding sites.
Vibrio fischeri quorum sensing involves the LuxI and LuxR proteins. The LuxI protein generates the quorum-sensing signal N-3-oxohexanoyl-l-homoserine lactone (3OC6-HSL), and LuxR is a signal-responsive transcriptional regulator which activates the luminescence (lux) genes and 17 other V. fischeri genes. For activation of the lux genes, LuxR binds to a 20-base-pair inverted repeat, the lux box, ...
متن کاملQuorum regulation of luminescence in Vibrio fischeri.
Luminescence in Vibrio fischeri is controlled by a population density-responsive regulatory mechanism called quorum sensing. Elements of the mechanism include: LuxI, an acyl-homoserine lactone (acyl-HSL) synthase that directs synthesis of the diffusible signal molecule, 3-oxo-hexanoyl-HSL (V. fischeri autoinducer-1, VAI-1); LuxR, a transcriptional activator protein necessary for response to VAI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 26 شماره
صفحات -
تاریخ انتشار 1994